✅Как понять, какие задачи можно эффективно объединить в мультизадачную модель
Ключевой критерий — наличие общей структуры или схожих признаков между задачами.
🔍Хорошие кандидаты для мультизадачного обучения: — Задачи, основанные на одинаковых входных данных (например, текст, изображения). — Задачи, требующие похожего понимания структуры (например, синтаксического или семантического анализа в NLP). — Задачи, где одна может обогащать представление для другой (например, часть речи ↔️ определение сущностей).
📌Пример: В NLP можно объединить задачи классификации тональности, распознавания именованных сущностей и анализа зависимостей — они все используют текст и извлекают структурированную информацию.
🚫Плохие кандидаты — риск негативного переноса: — Задачи с разными типами данных и отдельными признаковыми пространствами (например, изображение + аудио без общего контекста). — Задачи с конфликтующими целями (например, одна требует обобщения, другая — запоминания деталей).
На что ещё обратить внимание: ➡️Размер и баланс подзадач — мелкие задачи могут быть подавлены. ➡️Возможность общей архитектуры (shared encoder + task-specific heads). ➡️Наличие метрик для оценки взаимного влияния задач.
✅Как понять, какие задачи можно эффективно объединить в мультизадачную модель
Ключевой критерий — наличие общей структуры или схожих признаков между задачами.
🔍Хорошие кандидаты для мультизадачного обучения: — Задачи, основанные на одинаковых входных данных (например, текст, изображения). — Задачи, требующие похожего понимания структуры (например, синтаксического или семантического анализа в NLP). — Задачи, где одна может обогащать представление для другой (например, часть речи ↔️ определение сущностей).
📌Пример: В NLP можно объединить задачи классификации тональности, распознавания именованных сущностей и анализа зависимостей — они все используют текст и извлекают структурированную информацию.
🚫Плохие кандидаты — риск негативного переноса: — Задачи с разными типами данных и отдельными признаковыми пространствами (например, изображение + аудио без общего контекста). — Задачи с конфликтующими целями (например, одна требует обобщения, другая — запоминания деталей).
На что ещё обратить внимание: ➡️Размер и баланс подзадач — мелкие задачи могут быть подавлены. ➡️Возможность общей архитектуры (shared encoder + task-specific heads). ➡️Наличие метрик для оценки взаимного влияния задач.
The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”
Библиотека собеса по Data Science | вопросы с собеседований from ms